
Information Coding / Computer Graphics, ISY, LiTH

Lecture 12
A few more CUDA issues

Sorting on GPU

The Fast Fourier Transform

OpenGL interoperability

Information Coding / Computer Graphics, ISY, LiTH

Lecture questions
1) What is the challenge in parallizing the FFT?

2) In what way does bitonic sort fit the GPU
better than many other sorting algorithms?

3) What is the advantage of using CUDA
OpenGL interoperability?

Information Coding / Computer Graphics, ISY, LiTH

Lab 5
All new lab on sorting on the GPU

Prototype done, tested, looks good

Instructions pretty sh*tty

Will be available monday - maybe earlier in
preliminary version

Information Coding / Computer Graphics, ISY, LiTH

So what will it be?
Parallellize bitonic merge sort.

Start from a fairly parallel friendly
implementation

Very easy to parallellize for small data sets (i.e.
up to 512-1024)

Some more work to make it run with larger data

Information Coding / Computer Graphics, ISY, LiTH

Not much use for shared memory
in lab 4 and 5

Lab 6 is focused entirely on shared memory -
but in OpenCL

Information Coding / Computer Graphics, ISY, LiTH

More memory
Atomics

Pinned memory

Mapped memory

Information Coding / Computer Graphics, ISY, LiTH

Atomic operations
A special memory access method, for avoiding

conflicts and race conditions.

Available from Compute model 1.1.

To use it, specify model with

-arch compute_11

Information Coding / Computer Graphics, ISY, LiTH

Example: Histogram
Simple method for gathering statitics about a set of

data.

Common in image processing.

for all elements i in a[]
h[a[i]] += 1

Information Coding / Computer Graphics, ISY, LiTH

Histogram memory conflicts
If you try to parallelize this operation, threads will write

at the same place.

Non-atomic operations will read h[a[i]], add 1, and write
back.

Read

Add 1

Write back

Read

Add 1

Write back

10

11

Read

Add 1

Write back

Read

Add 1

Write back

10

11

10

11

or

Unknown write order

Write unsynchronized values in sequence

Information Coding / Computer Graphics, ISY, LiTH

Solution: Atomics
Read - modify - write in one operation!

Guaranteed not to be subject to racing.

atomicAdd, atomicSub, atomicExch, atomicMin, atomicMax,
atomicInc, atomicDec, atomicCAS, atomicAnd, atomicOr, atomicXor

More types in fermi

For a cost: Slower than other operations.

Global memory only (1.1)

Information Coding / Computer Graphics, ISY, LiTH

Example: Find maximum
for all elements i in a[]

maxValue := max(maxValue, a[i])

Easy? Parallel? No!

All threads will write to the same memory element!

Use atomics? Very slow! All write at the same time, will have to
wait - we get sequential performance.

Solution: Split problem in parts, each section finds a local
maximum. Merge later.

Information Coding / Computer Graphics, ISY, LiTH

Pinned memory
Page-locked memory

So far: malloc() and cudaMalloc()

New call: cudaHostAlloc()

Allocated page-locked memory! Fixed
physical location!

Information Coding / Computer Graphics, ISY, LiTH

Pinned memory
Page-locked memory is a limited resource!

If you donʼt use it: CUDA copies internally to
page-locked memory, then DMA to GPU.

Transfer time goes up!

Information Coding / Computer Graphics, ISY, LiTH

Pinned memory, streams,
overlapping computation

Pinned memory is part of the optimization
with overlapping computations

Not only slight speedup of the data transfer.

cudaMemcpyAsynch(), can copy locked
memory asynchonously

Information Coding / Computer Graphics, ISY, LiTH

CUDA Events and Streams
CUDA commands are placed in a queue - a

stream

Commands are executed, and when a marker is
encountered, it is given a time value

We usually only use the default CUDA stream.

Multiple CUDA streams can be used to overlap
work - especially computing and data transfers

Information Coding / Computer Graphics, ISY, LiTH

Copy data to GPU

Run kernel

Copy result to CPU

Copy data to GPU

Run kernel

Copy result to CPU

Single stream computation
The kernel can not run until the data is

transfered.

For this example: 2/3 data transfer, 1/3
computation

Information Coding / Computer Graphics, ISY, LiTH

Copy data to GPU

Run kernel

Copy result to CPU

Copy data to GPU

Run kernel

Copy result to CPU

Dual stream
computation

One stream runs a kernel while
the other performs data

copying.

More time for computing,
kernels running 1/2 of the time

instead of 1/3.

Copy data to GPU

Run kernel

Copy result to CPU

Copy data to GPU

Run kernel

Copy result to CPU

-

-

-

Information Coding / Computer Graphics, ISY, LiTH

Not all devices...
Asynchronous data copying as well as

concurrent execution is not guaranteed...

so make a device query!

CU_DEVICE_ATTRIBUTE_ASYNCH_ENGINE_CO
UNT: Can we copy pinned memory asynch?

CU_DEVICE_ATTRIBUTE_CONCURRENT_KERN
ELS: Can we run multiple kernels?

Information Coding / Computer Graphics, ISY, LiTH

Mapped memory
Mapped memory shared between CPU and

GPU, no transfer needed.

Must be page-locked.

Data transfers overlapping kernel execution
possible without multiple streams.

Information Coding / Computer Graphics, ISY, LiTH

Debugging CUDA
Letʼs get a bit more efficient when your code

doesnʼt work

• Catch error codes

• printf() from kernels

• cudagdb

Information Coding / Computer Graphics, ISY, LiTH

Catch those error codes
// Check for errors everywhere
err = cudaMalloc((void**)&ad, csize);
// If the GPU won't even take our data we are toasted
if (err) printf("cudaMalloc %d %s\n", err, cudaGetErrorString(err));
...
dim3 dimBlock(blocksize, 1);
dim3 dimGrid(1, 1);
hello<<<dimGrid, dimBlock>>>(ad, bd);
// Most important thing to check? Did the kernel run at all?
err = cudaPeekAtLastError();
if (err) printf("cudaPeekAtLastError %d %s\n", err, cudaGetErrorString(err));

and pass them to cudaGetErrorString() for an explanation

Information Coding / Computer Graphics, ISY, LiTH

printf() from kernels
Yes - printf() if legal in a kernel since

Compute Capability 2.0

But donʼt try to print 100000 messages per
second...

Information Coding / Computer Graphics, ISY, LiTH

More advanced debugger tools
There are more tools to help you out there!

cudagdb

Variant of the GDB debugger

Allows breakpoints and single-stepping
CUDA kernels!

